

LA-UR-21-27092

Approved for public release; distribution is unlimited.

Title: Novel Molten Salt Neutron Imaging Furnace Design

Author(s): Horan, Caleb Josef

Intended for: Student Symposium

Issued: 2021-07-21

Novel Molten Salt Neutron Imaging Furnace Design

Caleb Horan Colorado State University

MST-8

Mentor: Dale T. Carver (Travis)

Project statement

- 3 major obstacles
- Thermal analysis

- What was accomplished
- Next steps

Motivation

- Gen IV nuclear reactors
- Evolution of moderators
- UNACCEPTABLE uncertainty ± 50%
- Accuracy and precision improvement necessary

Project Statement

Design a furnace capable of reaching 1200* C, with temperature monitoring and the ability to support the neutron imaging of radiological samples while rotating the sample containment.

Triple containment

Rotation

Specialized rotary motor

Spline Coupler

Dry-running thrust bearings

Sample replacement

- Detachable thermocouples
- Breakable coupling connection
- Removable lid+insulation

Thermal analysis

 Calculating/comparing heat transfer to max material operating conditions

What was accomplished

- Triple containment
- Rotation
- Sample Replacement

Next steps

- Parts ordered
- Assemble
- Experiment

